Bezier curve implementation in C. Collected from the internet (the Author is revealed below). Bezier curve is composed of two anchor points (start, end) and two control points which bends the curve like a magnet. See following code for details.
/* Subroutine to generate a Bezier curve.
Copyright (c) 2000 David F. Rogers. All rights reserved.
b[] = array containing the defining polygon vertices
b[1] contains the x-component of the vertex
b[2] contains the y-component of the vertex
b[3] contains the z-component of the vertex
Basis = function to calculate the Bernstein basis value (see MECG Eq 5-65)
cpts = number of points to be calculated on the curve
Fractrl = function to calculate the factorial of a number
j[] = array containing the basis functions for a single value of t
npts = number of defining polygon vertices
p[] = array containing the curve points
p[1] contains the x-component of the point
p[2] contains the y-component of the point
p[3] contains the z-component of the point
t = parameter value 0 <= t <= 1
*/
#ifdef HAVE_CONFIG_H
#ifdef WIN32
#include <windows_config.h>
#else
#include <config.h>
#endif
#endif // HAVE_CONFIG_H
#include <math.h>
#include <iostream>
#ifdef _DEBUG
#include <utils/dev/debug_new.h>
#endif // _DEBUG
using namespace std;
/* function to calculate the factorial */
SUMOReal factrl(int n)
{
static int ntop=6;
static SUMOReal a[33]={1.0,1.0,2.0,6.0,24.0,120.0,720.0}; /* fill in the first few values */
int j1;
if (n < 0) { throw 1; } //cout << "\nNegative factorial in routine FACTRL\n" ; if (n > 32) { throw 1; } //cout << "\nFactorial value too large in routine FACTRL\n";
while (ntop < n) { /* use the precalulated value for n = 0....6 */
j1 = ntop++;
a[n]=a[j1]*ntop;
}
return a[n]; /* returns the value n! as a SUMORealing point number */
}
/* function to calculate the factorial function for Bernstein basis */
SUMOReal Ni(int n,int i)
{
SUMOReal ni;
ni = factrl(n)/(factrl(i)*factrl(n-i));
return ni;
}
/* function to calculate the Bernstein basis */
SUMOReal Basis(int n,int i,SUMOReal t)
{
SUMOReal basis;
SUMOReal ti; /* this is t^i */
SUMOReal tni; /* this is (1 - t)^i */
/* handle the special cases to avoid domain problem with pow */
if (t==0. && i == 0) ti=1.0; else ti = pow(t,i);
if (n==i && t==1.) tni=1.0; else tni = pow((1-t),(n-i));
basis = Ni(n,i)*ti*tni; /* calculate Bernstein basis function */
return basis;
}
/* Bezier curve subroutine */
void
bezier(int npts, SUMOReal b[], int cpts, SUMOReal p[])
{
int i;
int j;
int i1;
int icount;
int jcount;
SUMOReal step;
SUMOReal t;
SUMOReal factrl(int);
SUMOReal Ni(int,int);
SUMOReal Basis(int,int,SUMOReal);
/* calculate the points on the Bezier curve */
icount = 0;
t = 0;
step = (SUMOReal) 1.0/(cpts -1);
for (i1 = 1; i1<=cpts; i1++){ /* main loop */
if ((1.0 - t) < 5e-6) t = 1.0;
for (j = 1; j <= 3; j++){ /* generate a point on the curve */
jcount = j;
p[icount+j] = 0.;
for (i = 1; i <= npts; i++){ /* Do x,y,z components */
p[icount + j] = p[icount + j] + Basis(npts-1,i-1,t)*b[jcount];
jcount = jcount + 3;
}
}
icount = icount + 3;
t = t + step;
}
}